A Lightweight Depth Estimation Network for Wide-Baseline Light Fields

نویسندگان

چکیده

Existing traditional and ConvNet-based methods for light field depth estimation mainly work on the narrow-baseline scenario. This paper explores feasibility capability of ConvNets to estimate in another promising scenario: wide-baseline fields. Due deficiency training samples, a large-scale diverse synthetic dataset with labelled data is introduced prediction tasks. Considering practical goal real-world applications, we design an end-to-end trained lightweight convolutional network infer depths from fields, called LLF-Net. The proposed LLF-Net built by incorporating cost volume which allows variable angular inputs attention module that enables recover details at occlusion areas. Evaluations are made experimental results show achieves best performance when compared recent state-of-the-art methods. We also evaluate our datasets, it consequently improves previous

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...

متن کامل

3D Wide Baseline Correspondences Using Depth-Maps

Points matching between two or more images of a scene shot from different viewpoints is the crucial step to defining epipolar geometry between views, recover the camera’s egomotion or build a 3D model of the framed scene. Unfortunately in most of the common cases robust correspondences between points in different images can be defined only when small variations in viewpoint position, focal leng...

متن کامل

Structured Attention Guided Convolutional Neural Fields for Monocular Depth Estimation

Recent works have shown the benefit of integrating Conditional Random Fields (CRFs) models into deep architectures for improving pixel-level prediction tasks. Following this line of research, in this paper we introduce a novel approach for monocular depth estimation. Similarly to previous works, our method employs a continuous CRF to fuse multi-scale information derived from different layers of...

متن کامل

Fast and Accurate Optical Flow based Depth Map Estimation from Light Fields

Depth map estimation is a crucial task in computer vision, and new approaches have recently emerged taking advantage of light fields, as this new imaging modality captures much more information about the angular direction of light rays compared to common approaches based on stereoscopic images or multi-view. In this paper, we propose a novel depth estimation method from light fields based on ex...

متن کامل

Depth Estimation for Glossy Surfaces with Light-Field Cameras

Light-field cameras have now become available in both consumer and industrial applications, and recent papers have demonstrated practical algorithms for depth recovery from a passive single-shot capture. However, current lightfield depth estimation methods are designed for Lambertian objects and fail or degrade for glossy or specular surfaces. Because light-field cameras have an array of micro-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE transactions on image processing

سال: 2021

ISSN: ['1057-7149', '1941-0042']

DOI: https://doi.org/10.1109/tip.2021.3051761